


Some History of MD 
 

• MANIAC operational at Los Alamos in 1952 
• Metropolis, Rosenbluth, Rosenbluth and Teller: 

Metropolis Monte Carlo method (for equilibrium 
systems) in 1953. 

• Alder and Wainwright (Livermore 1956): dynamics of 
hard spheres. 

• Vineyard (Brookhaven 1959-60): radiation damage in 
copper. 

• Rahman (Argonne 1964): liquid argon. 
• Car and Parrinello (Sissa1985): ab-initio MD 
 



A Tutorial on Molecular Dynamics (MD) 

• For an interacting n-particle system, the 
equation of motion of the system is N coupled 
equations. 
 
 

• Note: The force depends on positions only. 
The total energy of the system is conserved (in 
a microcanonical evolution). 



A Tutorial on Molecular Dynamics (MD) 

• We follow the evolution of the system, which 
is composed of N classical particles. 

• Each particle interacts simultaneously with 
every other particle, and can experience an 
additional external potential. 

• This is a many-body problem. What does it 
differ from the dynamics of the electronic 
system? 
 



Phase Space 
 

• If we have N particles, we need to specify 
positions and velocities for all of them (6N 
variables) to uniquely identify the dynamics of 
the system. 

• One point in a 6N-dimensional space (the 
phase space) represents the dynamical system. 
 



Three Goals of MD 

• Ensemble averages (thermodynamics) 
• Real-time evolution (chemistry) 
• Ground-state of the optimized structures 

    a). Structure of low-symmetry systems: liquids, 
amorphous solids, defects, surfaces. 
     b). Ab-initio approach: bond-breaking and charge 
transfer; structure of a complex in non trivial systems 
such as biomolecules. 



Limitations of MD 

 
• Time scales (< nano seconds) 
• Length scales (<1 um) 
• Accuracy of forces  
• Classical nuclei 
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Thermodynamical Averages 

Under hypothesis of ergodicity, we can assume that the temporal 
average along a trajectory is equal to the ensemble-average over 
the phase space.  
 
 

 
• Let’s do straightforward integration of the equations of motion 

(in a microcanonical ensemble with constant N, V and E). 
• The trajectory in the phase space spans states belonging to the 

microcanonical ensemble. 
• A long trajectory generates an excellent sample of microstates. 

 
                      

 



Computational Experiment with MD 

• Initialize: select positions and velocities 
• Integrate: compute all forces, and determine 

new positions 
• Equilibrate: let the system reach equilibrium 

(i.e. lose memory of initial conditions) 
• Average: accumulate quantities of interest 

 



Initialization: Maxwell-Boltzmann 
Distribution 

 
 



Integrate 
 
 

 

• Use an integrator: Verlet, leapfrog Verlet, velocity 
Verlet, Gear predictor-corrector 

• Robust, long-term conservation of the constant of 
motion, time-reversible, constant volume in phase 
space 

• Choose thermodynamic ensemble (microcanonical 
NVE, or canonical NVT using a thermostat, 
isobaric-isothermic NPT with a barostat…) 



Integrator: The Verlet algorithm 



A Case Study of MD 

        Polymer interaction with a metal oxide surface 
1. Cleave, relax Al2O3 surface, and then increase the surface area 
2. Build an amorphous cell of p-nitro styrene polymer  
3. Add the polymer to the surface 
5. Optimize the layer system and run molecular dynamics 
6. Calculate the interaction energy 



Why ab Initio MD ? 

Chemical processes                                             
Poorly known interatomic interactions, e.g., at high 
Pressure and/or Temperature  
Properties depending explicitly on electronic states: IR 
spectra, Raman scattering, and NMR chemical shift 
Bonding properties of complex systems 



Categories of ab initio MD 

• Born-Oppenheimer Molecular Dynamics 
– move on a PES, the electronic structure calculation 

converges at each time point  
 

• Car-Parrinello Molecular Dynamics 
– propagate the electronic structure as well as the nuclei 

using an extended Lagrangian           
  



A General View of qMD 
• Quantum Molecular Dynamics (qMD): any MD method that derives forces on nuclei from 

quantum-mechanical electrons. 
• Using Hellman-Feynman forces on the ions (Born-Oppenheimer Molecular Dynamics ) 
• Most qMD methods were developed/implemented within the framework of DFT 

– Why? Electron correlation effects included, computational efficiency (relatively speaking) 
– All limitations (excited states, spin issues, hydrogen problem, van der Waals interaction, etc. etc.) 

of the ground-state DFT apply 
• qMD simulations pioneered by Car and Parrinello in 1985 under the DFT framework are 

the most effective techniques to compute the dynamic properties of materials from 
electronic structure equations. 

• Four important advances: 
– Optimization methods instead of variational equations 
– Equation of motion (instead of matrix diagonalization) 
– Fast Fourier Transform (FFT) instead of matrix operations 
– Trace of the occupied subspace instead of eigenvectors operations 

• Car and Parrinello combined these features into a unified algorithm for electronic states, 
self-consistency and nuclear movement 



Born-Oppenheimer MD 

 Electronic quantum adiabatic evolution and classical ionic dynamics 

Effective Hamiltonian : 

Ho
I → includes ionic K.E. and ion-ion interaction 

2nd term → Free energy of an inhomogeneous electron gas 
in the fixed configuration of ions at positions (RI) 

Electronic ground state – electron density ρ(r) that minimizes 
F({RI}) min 

Born-Oppenheimer Potential Energy Surface 



Born-Oppenheimer MD 

Electronic density  ; fi → occupation number 

EeI → Electron-Ion coupling term includes local and nonlocal components 

Kohn-Sham Hamiltonian operator 

Time evolution of electronic variables 

Time dependence of Hks  ←  slow ionic evolution govern by Newton’s equations 

Uks = minimum of Eks w.r.t. ψi 

- 



Born-Oppenheimer Molecular Dynamics  

Stop accumulate statistics 

Initial configuration 

Solve the DFT problem Egs[{RI}] 

update atomic positions 

calculate forces FI=∂Egs[{RI}] /∂RI  



Pros & Cons of BOMD 

Advantages                                        Disadvantages 

 True Electronic Adiabatic  
    Evolution on the BO PES 

  Need to solve the self- 
     consistent electronic-structure  
     problem at each time step 

  Minimization algorithms  
     require ~ 10 iterations to  
     converge to the BO forces 

  Poorly converged electronic  
     minimization → damping of  
     the ionic motion 

Computationally demanding procedure 



Car-Parrinello MD 
CP fictitious Lagrangian (for both ions and electrons) 

• (fictitious) kinetic energy for the electrons 

• Kinetic energy of the nuclei 

• Potential energy of the electrons AND of the ions 

• Final term ensures the orthonormality of the electronic wavefunctions 

 



CP Equations of Motion 
Equations of motion from Lcp : 

Ionic time evolution 

Electronic time 
evolution 

Constraint equation 



Car-Parrinello Molecular Dynamics 

Stop accumulate statistics 

Initial configuration 

Solve the DFT problem Egs[{RI}, {ψi}] 

update wave functions ψi  

ionic forces FI = - ∂Etot[{RI}] / ∂RI 

update atomic positions RI  

electronic forces F i = - ∂Etot[{RI}, {ψi}] / ∂ψi
* 



Dynamic Simulations 

Quantum Dynamics 
Ab initio potential 
Both nuclear and 
electronic (and thus 
MANY) degrees of 
freedom 
Chemical reactions 
Few atoms 
Accessible length 
scale ~5 Å 
Accessible time scale 
~ 10 fs 

 

Ab initio MD 
On-the-fly potential 
Electronic degrees 
of freedom 
Formation and 
breaking of bonds 
~100 atoms 
Accessible length 
scale ~ 20 Å 
Accessible time 
scale ~ 10 ps 

Classical MD 
Hardwired potential 
No electronic 
degrees of freedom 
No chemical 
reaction 
~100,000 atoms 
Accessible length 
scale ~100 Å 
Accessible time 
scale ~ 10 ns 

 



Difficulties in the CP method 
• The behavior of the fictitious Lagrangian has to be examined with great care. The 

method works well for system with an electronic energy gap. 
– Characteristics electronic oscillations are of the order of Egap/µ. If these 

frequencies are much higher than the typical nuclear vibrational frequencies then 
the electrons will follow the nuclei adiabatically    total energy of the physical 
system is conserved (does not include the fictitious kinetic energy of the electrons) 

– Careful choice of the electrons’ fictitious mass µ to ensure adiabaticity, 
typically µ = 400me,  

• Time step ∆t must be short 
– ∆t is determined by the fictitious electronic degrees of freedom: time step must be 

smaller than in typical simulations for nuclei alone, typically 0.05 fs 
– Fictitious mass and time step are not completely decoupled and have to be 

carefully checked to ensure meaningful calculations 
• Vanishing gaps and metallic systems are difficult to treat with the straightforward 

application of the CP method 
–  energy transfer from ions to electrons 
– Need of thermostats to  pump energy out of the fictitious system 
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