Molecular Dynamics

Some History of MD

- MANIAC operational at Los Alamos in 1952
- Metropolis, Rosenbluth, Rosenbluth and Teller: Metropolis Monte Carlo method (for equilibrium systems) in 1953.
- Alder and Wainwright (Livermore 1956): dynamics of hard spheres.
- Vineyard (Brookhaven 1959-60): radiation damage in copper.
- Rahman (Argonne 1964): liquid argon.
- Car and Parrinello (Sissa1985): *ab-initio* MD

A Tutorial on Molecular Dynamics (MD)

• For an interacting n-particle system, the equation of motion of the system is *N* coupled equations.

$$m_i \frac{d^2 \vec{r}_i}{dt^2} = \vec{F}_i(\vec{r}_1, \cdots, \vec{r}_N)$$

 Note: The force depends on positions only. The total energy of the system is conserved (in a microcanonical evolution).

A Tutorial on Molecular Dynamics (MD)

- We follow the evolution of the system, which is composed of *N* classical particles.
- Each particle interacts simultaneously with every other particle, and can experience an additional external potential.
- This is a *many-body* problem. What does it differ from the dynamics of the electronic system?

Phase Space

- If we have *N* particles, we need to specify positions and velocities for all of them (*6N* variables) to uniquely identify the dynamics of the system.
- One point in a *6N*-dimensional space (the phase space) represents the dynamical system.

Three Goals of MD

- **Ensemble averages** (thermodynamics)
- **Real-time evolution** (chemistry)
- **Ground-state** of the optimized structures

a). Structure of low-symmetry systems: liquids, amorphous solids, defects, surfaces.

b). Ab-initio approach: bond-breaking and charge transfer; structure of a complex in non trivial systems such as biomolecules.

Limitations of MD

- Time scales (< nano seconds)
- Length scales (<1 um)
- Accuracy of forces
- Classical nuclei

Thermodynamical Averages

Under hypothesis of **ergodicity**, we can assume that the temporal average along a trajectory is equal to the ensemble-average over the phase space.

$$\left\langle A \right\rangle = \int A \exp(-\beta E) d\vec{r}^N d\vec{p}^N / \int \exp(-\beta E) d\vec{r}^N d\vec{p}^N \vec{A} = \frac{1}{T} \int_0^T A(t) dt \quad \Rightarrow \quad \left\langle A \right\rangle = \vec{A}$$

- Let's do straightforward integration of the equations of motion (in a microcanonical ensemble with constant N, V and E).
- The trajectory in the phase space spans states belonging to the microcanonical ensemble.
- A long trajectory generates an excellent sample of microstates.

Computational Experiment with MD

- Initialize: select positions and velocities
- **Integrate**: compute all forces, and determine new positions
- **Equilibrate**: let the system reach equilibrium (*i.e.* lose memory of initial conditions)
- Average: accumulate quantities of interest

Initialization: Maxwell-Boltzmann Distribution

Integrate

- Use an integrator: Verlet, leapfrog Verlet, velocity Verlet, Gear predictor-corrector
- **Robust, long-term conservation** of the constant of motion, time-reversible, constant volume in phase space
- Choose thermodynamic ensemble (microcanonical NVE, or canonical NVT using a thermostat, isobaric-isothermic NPT with a barostat...)

Integrator: The Verlet algorithm

 $\mathbf{r}(t + \Delta t) = \mathbf{r}(t) + \mathbf{v}(t)\Delta t + (1/2)\mathbf{a}(t)\Delta t^2 + (1/6)\mathbf{b}(t)\Delta t^3 + O(\Delta t^4)$

 $\mathbf{r}(t - \Delta t) = \mathbf{r}(t) - \mathbf{v}(t)\Delta t + (1/2)\mathbf{a}(t)\Delta t^2 - (1/6)\mathbf{b}(t)\Delta t^3 + O(\Delta t^4)$

Adding the two expressions gives

$$\mathbf{r}(t + \Delta t) = 2\mathbf{r}(t) - \mathbf{r}(t - \Delta t) + \mathbf{a}(t)\Delta t^2 + O(\Delta t^4)$$

 $\mathbf{a}(t) = -(1/m)\nabla V(\mathbf{r}(t)) \qquad \mathbf{v}(t) = \frac{\mathbf{r}(t + \Delta t) - \mathbf{r}(t - \Delta t)}{2\Delta t}$ $\left\langle A \right\rangle \approx \frac{1}{N} \sum_{i=1}^{N} A(\vec{r}_{n})$

A Case Study of MD

Polymer interaction with a metal oxide surface

- 1. Cleave, relax Al2O3 surface, and then increase the surface area
- 2. Build an amorphous cell of *p*-nitro styrene polymer
- 3. Add the polymer to the surface
- 5. Optimize the layer system and run molecular dynamics
- 6. Calculate the interaction energy

Why ab Initio MD ?

- Chemical processes
- Poorly known interatomic interactions, *e.g.*, at high Pressure and/or Temperature
- Properties depending explicitly on electronic states: IR spectra, Raman scattering, and NMR chemical shift
- Bonding properties of complex systems

Categories of *ab initio* MD

- Born-Oppenheimer Molecular Dynamics
 - move on a PES, the electronic structure calculation converges at each time point
- Car-Parrinello Molecular Dynamics
 - propagate the electronic structure as well as the nuclei using an extended Lagrangian

A General View of qMD

- Quantum Molecular Dynamics (qMD): any MD method that derives forces on nuclei from quantum-mechanical electrons.
- Using Hellman-Feynman forces on the ions (Born-Oppenheimer Molecular Dynamics)
- Most qMD methods were developed/implemented within the framework of DFT
 - Why? Electron correlation effects included, computational efficiency (relatively speaking)
 - All limitations (excited states, spin issues, hydrogen problem, van der Waals interaction, etc. etc.) of the ground-state DFT apply
- qMD simulations pioneered by Car and Parrinello in 1985 under the DFT framework are the most effective techniques to compute the dynamic properties of materials from electronic structure equations.
- Four important advances:
 - Optimization methods instead of variational equations
 - Equation of motion (instead of matrix diagonalization)
 - Fast Fourier Transform (FFT) instead of matrix operations
 - Trace of the occupied subspace instead of eigenvectors operations
- Car and Parrinello combined these features into a unified algorithm for electronic states, self-consistency and nuclear movement

Born-Oppenheimer MD

Electronic quantum adiabatic evolution and classical ionic dynamics **Effective Hamiltonian :**

 $\mathbf{H}_{\mathbf{I}} = \mathbf{H}_{\mathbf{I}}^{\mathbf{O}}(\{\overrightarrow{R_{I}}, \overrightarrow{R_{I}}\}) + \mathbf{F}(\{\overrightarrow{R_{I}}\})$

 $H^{o}_{I} \rightarrow$ includes ionic K.E. and ion-ion interaction

 2^{nd} term \rightarrow Free energy of an inhomogeneous electron gas in the fixed configuration of ions at positions ($\mathbf{R}_{\mathbf{I}}$)

Electronic ground state – electron density $\rho(r)$ that minimizes $F(\{\mathbf{R}_{\mathbf{I}}\})_{\min}$

Born-Oppenheimer Potential Energy Surface

$$U_{BO}\left(\left\{\vec{R}_{I}\right\}\right) = \min_{\rho(\vec{r})} E\left(\rho(\vec{r}), \left\{\vec{R}_{I}\right\}\right)$$

Born-Oppenheimer MD

Electronic density $\rho(r) = \sum_{i} f_{i} |\psi_{i}(\vec{r})|^{2} (; f_{i} \rightarrow \text{occupation number})$

 $E_{eI} \rightarrow$ Electron-Ion coupling term includes local and nonlocal components

Kohn-Sham Hamiltonian operator

$$\frac{\delta \mathbf{E_{KS}}}{\delta \psi_{\mathbf{i}}^*(\mathbf{r})} = \mathbf{f_i} \mathbf{H_{ks}} \psi_{\mathbf{i}}(\mathbf{r})$$

Time evolution of electronic variables

$$\mathbf{H_{ks}}(\mathbf{t})\psi_{\mathbf{i}}^{\mathbf{ks}}(\mathbf{r},\mathbf{t}) = \varepsilon_{\mathbf{i}}(\mathbf{t})\psi_{\mathbf{i}}^{\mathbf{ks}}(\mathbf{r},\mathbf{t})$$

Time dependence of $H_{ks} \leftarrow$ slow ionic evolution govern by Newton's equations

$$\mathbf{M}_{\mathbf{I}} \overrightarrow{\overrightarrow{R}_{I}} = \overrightarrow{F_{I}} = [\frac{\partial \mathbf{U}_{\mathbf{ks}}}{\partial \mathbf{R}_{\mathbf{I}}}]$$

$$U_{ks}$$
 = minimum of E_{ks} w.r.t. ψ_i

Born-Oppenheimer Molecular Dynamics

Pros & Cons of BOMD

Advantages

True Electronic Adiabatic Evolution on the BO PES

Disadvantages

- Need to solve the selfconsistent electronic-structure problem at each time step
- Minimization algorithms require ~ 10 iterations to converge to the BO forces
- Poorly converged electronic minimization → damping of the ionic motion

Computationally demanding procedure

Car-Parrinello MD

CP fictitious Lagrangian (for both ions and electrons)

$$egin{aligned} \mathbf{L_{CP}} &= \mu \sum_{\mathbf{i}} \int \left| \dot{\psi_{\mathbf{i}}}(\mathbf{r})
ight|^2 \mathbf{d} \, \overrightarrow{r} + rac{1}{2} \sum_{\mathbf{I}} \mathbf{M_{I}} \dot{\overrightarrow{R_{I}}}^2 \, - \mathbf{E_{ks}}[\{\psi_{\mathbf{i}}\}, \overrightarrow{R_{I}}] \ &+ \sum_{\mathbf{i}, \mathbf{j}} \mathbf{\Lambda_{ij}} (\int \psi_{\mathbf{i}}^*(\mathbf{r}) \psi_{\mathbf{j}}(\mathbf{r}) \mathbf{d} \, \overrightarrow{r} - \delta_{\mathbf{ij}}) \end{aligned}$$

- (fictitious) kinetic energy for the electrons
- Kinetic energy of the nuclei
- Potential energy of the electrons AND of the ions
- Final term ensures the orthonormality of the electronic wavefunctions

CP Equations of Motion

Equations of motion from L_{cp} **:**

$$\frac{\mathbf{d}}{\mathbf{dt}}\frac{\partial \mathbf{L_{cp}}}{\partial \mathbf{\dot{q_i}}} - \frac{\partial \mathbf{L_{cp}}}{\partial \mathbf{q_i}} = \mathbf{0}$$

$$egin{aligned} & \mu\ddot{\psi}_{\mathbf{i}}(\mathbf{r},\mathbf{t}) = -rac{\delta\mathbf{E_{ks}}}{\delta\psi_{\mathbf{i}}^*(\mathbf{r})} + \sum_{\mathbf{j}}\mathbf{\Lambda_{ij}}\psi_{\mathbf{j}}(\mathbf{r}) \ & = -\mathbf{f_i}\mathbf{H_{ks}}\psi_{\mathbf{i}}(\mathbf{r},\mathbf{t}) + \sum_{\mathbf{j}}\mathbf{\Lambda_{ij}}\psi_{\mathbf{j}}(\mathbf{r}) \end{aligned}$$

Electronic time evolution

$$\mathbf{M_{I}}\ddot{\mathbf{R_{I}}} = -\frac{\partial \mathbf{E_{ks}}}{\partial \mathbf{R_{I}}}|_{\rho}$$

Ionic time evolution

$$\mathbf{N_{ij}(t)} = \int \psi^*_{\mathbf{i}}(\mathbf{r}, \mathbf{t}) \psi_{\mathbf{j}}(\mathbf{r}, \mathbf{t}) \mathbf{dr} = \delta_{\mathbf{ij}}$$

Constraint equation

Car-Parrinello Molecular Dynamics

Dynamic Simulations

Quantum Dynamics

- Ab initio potential
- Both nuclear and electronic (and thus MANY) degrees of freedom
- Chemical reactions
- Few atoms
- Accessible length scale ~5 Å
- Accessible time scale
 ~ 10 fs

Ab initio MD

- On-the-fly potential
- Electronic degrees of freedom
- Formation and breaking of bonds
- ~100 atoms
- Accessible length scale ~ 20 Å
- Accessible time scale ~ 10 ps

Classical MD

- Hardwired potential
- No electronic degrees of freedom
- No chemical reaction
- ~100,000 atoms
- Accessible length scale ~100 Å
- Accessible time scale ~ 10 ns

Difficulties in the CP method

- The behavior of the fictitious Lagrangian has to be examined with great care. The method works well for system with an electronic energy gap.
 - Characteristics electronic oscillations are of the order of E_{gap}/μ . If these frequencies are much higher than the typical nuclear vibrational frequencies then the electrons will follow the nuclei adiabatically \rightarrow total energy of the physical system is conserved (does not include the fictitious kinetic energy of the electrons)
 - Careful choice of the electrons' fictitious mass μ to ensure adiabaticity, typically $\mu = 400m_e$,
- Time step Δt must be short
 - Δt is determined by the fictitious electronic degrees of freedom: time step must be smaller than in typical simulations for nuclei alone, typically 0.05 fs
 - Fictitious mass and time step are not completely decoupled and have to be carefully checked to ensure meaningful calculations
- Vanishing gaps and metallic systems are difficult to treat with the straightforward application of the CP method
 - energy transfer from ions to electrons
 - Need of thermostats to pump energy out of the fictitious system